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Real-time decision making has acquired increasing interest as a means to efficiently
operating complex systems. The main challenge in achieving real-time decision making
is to understand how to develop next generation optimization procedures that can work
efficiently using: (i) real data coming from a large complex dynamical system, (ii) sim-
ulation models available that reproduce the system dynamics. While this paper focuses
on a different problem with respect to the literature in RL, the methods proposed in this
paper can be used as a support in a sequential setting as well. The result of this work
is the new Generalized Ordinal Learning Framework (GOLF) that utilizes simulated
data interpreting them as low accuracy information to be intelligently collected offline
and utilized online once the scenario is revealed to the user. GOLF supports real-time
decision making on complex dynamical systems once a specific scenario is realized. We
show preliminary results of the proposed techniques that motivate the authors in further
pursuing the presented ideas.

Keywords: Simulation optimization; multi-fidelity; ordinal learning; stochastic optimiza-
tion; real-time decision making.

1. Introduction and Motivation

Simulation has been used to support design and optimization of industrial, trans-
portation, water distribution systems among many others. More recently, we have
witnessed an increased interest in the use of simulation for the real time operation
of large complex systems. Under the perspective of Cyber-Physical Systems (CPS),
it has become increasingly apparent that data from the real physical system should
be coupled with data from the simulated system, to improve decision making. The
problem of using real system data to inform the decision process is one of the foci of
the machine learning (ML) literature that has undergone an unprecedented develop-
ment. Simulation models of the environment represent a very important component
for most CPSs, where real historical data are not enough to support control. In fact,
decision making in many critical applications is very challenging due to the inherent
sparsity of available data, even when accounting for the increasing pervasiveness of
sensing technology. There are several causes for this sparsity: sensing large portions
of a complex system is often not cost effective (or impossible) for many applications,
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and making decisions requires information about not only what has happened in
the past and what is happening in the present, but also about the future events
(possible scenarios), which are inherently unknown and cannot be sensed. In this
setting, simulations, which are also based on past data and observations, offer the
opportunity to see what sensors cannot capture, including what may happen in
the future. We refer to this specific class of simulation generated “data” as look-
back data (LBD, including past and present simulated data) and look-ahead data
(LAD, future simulated data) and differentiate these from the observed data (OD),
which are obtained from sensors and, potentially, have high accuracy, but are inher-
ently sparse. It is important to note that LBD and LAD are potentially expensive
to obtain, voluminous, inherently imprecise and dependent upon analysts’ goals
(Fig. 1).

ML and, in particular, Reinforcement Learning (RL) represents the de-facto
standard for sequential decision making where a model of the environment is known
(but a closed-form solution to the model is not), a simulator of the environment
is available, and data can be gathered from the environment upon actions (Sutton
and Barto, 2018). In the context of simulation based optimization, RL literature
mainly focuses on long horizon problems, where the agent, in contact with the sim-
ulated environment, acts in order to maximize a long term expected reward. While
the response of the environment to the action can be evaluated by means of a sim-
ulation model, typically the long term reward is approximated using Monte Carlo
experiments (Bertsekas, 2008; Powell, 2007; Si et al., 2004). RL can be seen as a form
of simulation-based dynamic programming, used to solve Markov and semi-Markov
decision problems (Sutton and Barto, 2018). When solving a control-optimization
problem, RL can help avoid enumeration of complete transition probability matrices
and can help obtain compact representations of the underlying dynamic program-
ming matrices. It is important to note that, in this context, (i) there is a real

Fig. 1. GOLF framework.

1940011-3

A
si

a 
Pa

c.
 J

. O
pe

r.
 R

es
. 2

01
9.

36
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

H
O

N
G

Q
IN

G
 N

O
R

M
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
05

/1
7/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

https://www.worldscientific.com/action/showImage?doi=10.1142/S0217595919400116&iName=master.img-024.jpg&w=358&h=158


November 13, 2019 10:41 WSPC/S0217-5959 APJOR 1940011.tex

G. Pedrielli et al.

environment in which the agent acts or plans to act; (ii) each action in the real
world provides new data; (iii) there is a simulation model to support simulated
trials to associate reward values to potential actions in the real world, and (iv) the
goal is to decide which actions to take in the real environment to maximize the
reward function.

In contrast, in this work, we aim to address a different problem: (i) once again,
there is a real environment in which the agent acts or plans to act; (ii) but in this
case, there is an underspecified simulation model to support simulated trials (e.g.,
not a Markov/semi-Markovprocess); (iii) the data from the real-environment arrives
potentially independently from the actions of the agent; and (iv) the goal is to decide
which simulations to run to help improve the underspecified model. In fact, we aim
to address the fundamental challenge of learning about complex dynamical systems
by adopting large volume, potentially low accuracy simulated data derived from
(time-varying) simulation models along with real-world data (past observations).
We achieve the objective by proposing the Generalized Ordinal Learning Framework
(GOLF) for decision making with simulated data.

Note that the problem we investigate in this paper involves taking the best deci-
sion in a specific scenario by intelligently using both real (past observations) and
simulated data. This is equivalent to sequentially performing one-time optimiza-
tions, where the objective is to get as close as possible to the maximum reward for
each single scenario. The need to take a decision each time a new scenario is pre-
sented makes our optimization structure dynamic, allowing models to change over
time. An RL algorithm would instead keep applying a specific stationary policy,
upon completion of the learning phase. Nonetheless, while we deal with a differ-
ent problem, the techniques proposed in this manuscript well fit the policy search
research challenge for RL as well as transfer learning (Yamada et al., 2018).

Summarizing, Fig. 1 represents the proposed framework where LBDs, ODs, and
LADs are all interpreted as low accuracy (offline) information that can be adopted
in order to make educated decisions when the future (online) information becomes
available. GOLF not only provides a rigorous way to handle these numerous sources
of information, but also provides novel methods to guide the process for generating
data relevant to the decision process. Sections 1.1 and 1.2 revisit the literature
relevant to GOLF highlighting the main critical aspects and provide a detailed
description of the contributions of the present work to the literature, respectively.

1.1. Background

The problem of taking decisions based upon heterogeneous sources of data with no
closed form formulation of the system dynamics, can be brought back to the large
research field of black box optimization as well as the issue of exploring policies in
RL (Sutton and Barto, 2018). To optimize a black-box function, direct search as well
as metamodel-based approaches have been proposed in the literature (Fu, 2015).
Direct search methods select and evaluate candidate locations within the solution
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space according to a sampling algorithm, and update/adapt the sampling procedure
based upon the information from the search process. The presence of adaptation
and the structure of the sampling rule have led to the development of a plethora
of approaches. Examples include hit-and-run (Zabinsky and Smith, 1992; Zabinsky
et al., 1993; Solis and Wets, 1981; Brooks, 1958), GRASP (Feo and Resende, 1995)
a greedy adaptive random search sampling technique, and the stochastic ruler
method (Yan and Mukai, 1992; Alrefaei and Andradóttir, 2001).

Metamodel-based approaches differ from direct search methods in that they
consider all sampled points to make a sampling decision by constructing a response
surface model that emulates the function to optimize in locations where evaluation
has not yet been performed. In this rich research area, efforts have been dedicated
to proposing novel statistical models to improve the accuracy of the prediction,
as well as to the study of effective sampling criteria that are able to handle the
exploration/exploitation dilemma (Li et al., 2010). Concerning the model choice,
applications of ANN, kriging models, polynomial regression models and Radial
Basis Functions (RBFs) have been proven successful in different application set-
tings (Chen et al., 2015).

In this area, Gaussian Processes (GP), which will be used in this work, have
received an important attention (Quan et al., 2013; Ankenman et al., 2010; Yin
et al., 2011). Nevertheless, most of these models are designed to handle a single
source of data, whereas, as we mentioned, GOLF relies on at least three sources of
data: LBD, LAD, and OD. We can regard this problem as Multi-Fidelity simulation
optimization a rising field in simulation optimization, which focuses on the use of
lower precision models to support expensive simulation optimization algorithms. In
this area, Wang et al. (2013), propose Multi-Fidelity Optimization with Ordinal
Transformation and Optimal Sampling (MO2TOS) that relies on the concept of
Ordinal Transformation (OT). OT is a mapping X→ H, where X is d-dimensional
discrete space and H is a one-dimensional rank space constructed by associating
to each point of X, the rank computed according to the solution value returned by
the low-precision (fidelity) model (this could be the LAD, LBD related to a specific
solution with no associated OD). This mapping, as defined by the authors, can be
applied to any finite, countable space X. Once the mapped space is computed, the
solutions are grouped in sub-sets with respect to H and sampled according to the
Optimal Sampling (OS) scheme. The authors theoretically prove how the use of
low-fidelity models (offline data) can lead to improved performance with respect
to procedures not using any low-fidelity information. Hsieh et al. (2017) further
extends the previous contribution by using OT not only to transform the solution
space but also to decide on high-fidelity computational budget allocation. Hsieh
et al. (2016) and Zhang et al. (2016a), extend the application of this approach, and
Xu et al. (2014), proposes an innovative OS methodology that maximizes the esti-
mated probability of selecting the best solution. All the aforementioned approaches
handle one low-fidelity model. In the direction of introducing more fidelities, Xu
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et al. (2016a) proposes a novel scheme to weight predictions generated by multiple
low fidelities creating another equivalent low-fidelity model. More recently, Min
(2017) uses Gaussian Process Regression along with OT to optimize noisy observa-
tions of a black-box function. While the authors still focus on discrete optimization,
an approach to handle an arbitrary number of low-fidelity models is presented.
In the area of continuous optimization, Santner et al. (2013) represents the main
reference for the modeling of information from several fidelities and discusses co-
kriging as a possible framework to capture relationships between several models
when we can “rank” models in terms of fidelity. Forrester et al. (2007), develops
a co-kriging based method where an algorithm is proposed that chooses different
sampling points at the different fidelity levels. The authors consider a wing optimiza-
tion problem as a case study to validate and show the applicability of the proposed
method. More recently, Ulaganathan et al. (2015), extend the co-kriging formula-
tion with multi-fidelity gradient information. The authors numerically show how
the extra information from the multi-fidelity gradient can help the kriging model
achieve better prediction accuracy. Liu et al. (2016), propose to use a multi-fidelity
Gaussian Process with Memetic Differential Evolution, while Chen et al. (2015)
decompose the high-fidelity response into trend and residual components and use
a non-parametric locally weighted regression with smoothing. Osorio and Selvam
(2017) propose a method that combines information from evaluating models with
different fidelities to optimally control traffic networks. At each iteration, the algo-
rithm decides on the model to evaluate based on an estimate of accuracy loss due
to running the low-fidelity model.

In summary, OT and co-kriging-based methods are the two families of
approaches more related to GOLF that tackle multi-fidelity simulation-optimization
problems. OT is powerful in that it allows to reduce the dimensionality of the solu-
tion space and it reduces sampling to selecting the solution with the best associated
rank. While the concept has been proven very successful in the literature, it needs
to be further extended to cope with specific challenges such as the ability to handle
continuous input variables. This is particularly important not only when we have
continuous problems, but also when the number of solutions is particularly large and
the computational cost of the low-fidelity model, while low, is not negligible. While
co-kriging-based approaches can solve this issue, most of the algorithms require
to know the rank of the models in terms of fidelity and several authors highlight
the computational burden associated with the estimation of the co-kriging model
hyper-parameters (Santner et al., 2013).

1.2. Contribution

In this paper, we propose a data driven two-stage (offline and online) decision
support system, addressing a fundamental gap in the ability to leverage real and
simulated data for effective real-time decision making. We use a new source of infor-
mation (look-back data, LBD, and look-ahead data, LAD) and we propose innovative
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methods to generate, learn, and integrate those to provide reliable recommendations.
We highlight three major contributions resulting from this work:

• Contribution 1: Measuring relevance of simulation instances in a given decision
making context. Instead of fully relying on traditional fit and error measures,
which fail to capture the application context, we propose novel criteria that
dynamically and adaptively maximize the “explicability”, capture “complexity”,
and/or encourage “diversity” for simulation samples.
• Contribution 2: Budgeted and incremental LAD and LBD learning and sampling.

Grounded in these novel metrics, we develop an innovative family of budgeted sim-
ulation sampling algorithms that help construct models iteratively learned from
past observations, while providing insights into possible future scenarios. These
new learning and sampling methodologies face fundamental challenges given by
non-smooth functions and high-dimensional spaces.
• Contribution 3: LAD and LBD driven real-time decision making. We formulate

the decision problem accounting for inaccuracy of simulation ensembles in a way
that enhances the algorithmic speed of decision making with voluminous LAD
and LBD, appropriate to the required fidelity that needs to be provided to the
decision maker. Ordinal Learning will be the key method to allow the effective
use of offline generated data and models and integrate them iteratively with
newly generated information once the scenario of interest becomes available to
the decision maker.

2. Data and Simulation Based Decision Making and Control

In this work, we look at the specific problem of optimizing/controlling a large com-
plex dynamical system when multiple sources of data, including LBD and LAD in
addition to real OD, are used as estimates of the system performance. Formally,
the problem is to identify the decision x satisfying:

x = argmax
x∈X

J(x, Y |Y = y). (1)

Since J is a performance resulting from the operations of a large complex system,
it is not known in closed form and, instead, data (either real or simulated for past
or future scenarios) need to be adopted to as evaluations. x represents the decision,
while Y refers to the system parameters that are not controllable by the user (e.g.,
demand level for a product, location of the demand). The problem in Eq. (1) is
not solvable in closed form, nevertheless, data are available and can be generated
that provide useful information towards the goal of solving the problem in Eq. (1),
such as

• The optimal solution observed/computed under a different scenario, x∗(y′).
• The function value observed/simulated for a suboptimal solution for the same

scenario Y = y, i.e., J(x, Y |Y = y).
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• A function value observed/simulated for a suboptimal solution in a different sce-
nario Y = y′, i.e., J(x, Y |Y = y′).

This generalizes the learning typically implemented in RL, where a decision is made,
hopefully, based on solutions/decisions in the past (i.e., x∗(y′)). We argue that
different information can be used and generated to solve the problem in Eq. (1).
In fact, once Y becomes known, we may not have enough time to run a large
number of expensive simulations to take a decision. While data generated through
simulation experiments provide a rich body of information, the simulation ensembles
generated in the past almost certainly deviate from actual observations in the real
world. Hence, solely relying on decisions learned from simulated scenarios would
inevitably lead to sub-optimal outcomes. On the other hand, fully exploring the
decision space is not a viable approach because of the short time-window decision
makers face and the time-consuming nature of high-fidelity simulations that account
for the current observations.

The fundamental question, therefore, is how to make use of simulated data along
with the current observational data (i.e., the knowledge of Y = y) to efficiently
search the decision space while generating few additional simulations. Existing tech-
niques are of limited value because of the complexity, high dimensionality, and the
black-box nature of most real-world problems. In this paper, we propose the novel
GOLF that tackles the problem formalized in Eq. (1) by intelligently generating
and learning from simulations obtained by fixing the scenarios Y = y and decision
x, and transfers the learned information to the current scenario when it becomes
known. The new methodologies proposed look into four main challenges:

(a) Generate intelligently and evaluate offline scenarios Y = {y}.
(b) Estimate the function value J(x, Y |Y = y) by intelligently sampling “inter-

esting” actions x ∈ X.
(c) Learn the distribution g(Y) := (x∗ |Y ) ∈ argmaxx∈X

J(x, Y |Y = y) of opti-
mal decisions under scenarios y.

(d) Once the scenario is known, use offline information to guide online sampling
through ordinal learning and efficiently identify the best guess for x∗.

In the following, we present GOLF in its general architecture and detail the different
components.

3. Methodology: GOLF for Simulation Based Decision and Control

GOLF separates the learning and optimization into two phases: (1) offline: GOLF
tries to construct appropriate models for the function of interest using available
historical data together with simulated data. This is done before the scenario of
interest is revealed to the user; (2) online: once the scenario of interest becomes
known, GOLF selects data, generated offline, with a few carefully selected new
simulations.
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Fig. 2. GOLF partitions learning.

The offline phase tackles the problems of (1) non-smooth objective functions
and (2) high-dimensional solution spaces. In view of the first problem, we propose
a proof of concept for a novel framework to iteratively learn partitions of the solu-
tion space (or a transformation of it) allowing for the estimation of better models.
Figure 2 shows the main idea behind the offline learning scheme. Since we deal with
complex systems, it is natural to argue that multiple models may better represent
the system behavior in different regions. As an example, Fig. 2 (top right) shows
four different functions (J1,j , . . . , J4,j) where j is the index of the “slice” consid-
ered by the model. Slicing is a type of projection that GOLF uses to tackle the
problem of high dimensionality. Subsequently, our sampling algorithms will give a
different focus to different sub-regions driven by two main goals: (1) provide a good
approximation of the function across the solution/scenario space (bottom right rep-
resentation in Fig. 2) and (2) concentrate simulation effort in regions that are most
relevant to the optimization problem (bottom left representation in Fig. 2). There-
fore, GOLF needs to adaptively learn how the solution space (or a transformed
version of it) is partitioned and which model best represents the system behav-
ior in each of these learned partitions. Sections 3.1 and 3.2 deal with the problem
of defining effective criteria for the partitioning and estimation of the sub-models,
respectively. Section 3.3 deals with the efficient partitioning of the solution space
to increase the computational feasibility of the offline phase.

When all the offline data have been created and the information about the
scenario of interest becomes available, the online procedure needs to effectively use
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the offline information and generate few expensive online data to solve a complex
optimization problem (Adaptive Ensemble Ordinal Learning (AEOL), Sec. 3.4).

3.1. Learning from simulation : Metrics to define experiments

relevance in GOLF

We address the problem of how to define “interesting” configurations that sam-
pling should give higher priority to. We are interested in scenarios Y = {y} and
configurations X = {x} that can “easily” explain past observations, while pre-
serving fit quality. A common way to assess how well a set of simulations/data
explain a phenomenon of interest is to define a measure of fit, such as root-mean
square error (RMSE) or perplexity (in probabilistic settings), that help compare a
set of simulations to the corresponding observations. A challenge in time-variant
domains is that the degree of pairwise-matching between corresponding simulation
and observation instances may be difficult to define, especially if the observations
themselves are incomplete and or noisy and if the processes driving different variates
is asynchronous (Yu-Ru et al., 2011).

We argue that focusing on the maximization (or minimization) of a single mea-
sure of fit may drive the simulation effort towards a small set of apparently promis-
ing parameter configurations, that collectively provide a likely explanation of the
observations. Another shortcoming of the basic fit criteria is that they do not nec-
essarily promote parsimony of the resulting explanations, which can be critical in
decision making (Viana et al., 2014; Myers and Anderson-Cook, 2009; Muller and
Piche, 2011; Goel et al., 2007; Santner et al., 2013; Kleijnen, 2015; Le Gratiet and
Cannamela, 2015). Traditionally, model complexity is measured probabilistically,
examples are Akaike Information Criterion (AIC) and Bayesian Information Crite-
rion (BIC) (Ozdogan, 1987). However, evaluating the interpretative-complexity of
an ensemble is all but trivial and several difficult questions need to be addressed:
(a) interpretative-complexity is related to the effort required to estimate a function,
but how can we measure/predict, such an effort with highly non-linear models? (b)
interpretative-complexity is context-dependent: while, in some contexts, harmonic
signals may have an easy interpretation, elsewhere polynomials may be natural for
the explanation of a phenomenon.

In this paper, we introduce a novel approach to embed complexity considerations
in our family of ensembles. Specifically, let C(f(x)) be the interpretative-complexity
associated to function f(x). Table 1 presents a set of axioms that characterize the
complexity functional C(f(x)), used to associate appropriate complexity invariants,
C(sin), C(exp), and C(log) specific to an application domain (i.e., defined by the
user). It is important to highlight how this new formulation of complexity not only
considers the shape of the surface defined by the function, but also the specific form
the description of the function takes. In fact, the form to describe the function
plays an important role in our complexity measure since the raw function may take
several steps before being converted into its final simpler form, but this requires
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Table 1. Axioms of interpretative-
complexity.

f(x) = b → C(f(x)) = 0

f(x) = x → C(f(x)) = 1

f(x) = xm → C(f(x)) =

j
m, if m > 0
1
m

, otherwise

f(x) = sin x → C(f(x)) = C(sin)

f(x) = ex → C(f(x)) = C(exp)

f(x) = log x → C(f(x)) = C(log)

C(f(g(x))) = C(f(x)) × C(g(x))

C(f(x) + g(x)) = max{C(f(x)), C(g(x))}
C(f(x) × g(x)) = C(f(x)) + C(g(x))

one to spend more effort and time, hence justifying its consideration as part of
the complexity measure. Several approaches may be used to define the complexity
of a function, while this paper does not want to be exhaustive, we highlight how
complexity should be an integral part of any model evaluation criteria. In this work,
we will show preliminary results that use the complexity indicator to enhance more
traditional model performance metrics such as R2 (Alrefaei and Andradóttir, 2001;
West et al., 2012), AIC (Ozdogan, 1987), and Coverage (Burnham and Anderson,
2004; Wong et al., 2011). In particular, we discuss how complexity metrics can
be derived as extension of the Akaike Based Metrics. A similar approach can be
adopted for R2 and Coverage (Fig. 3).

Akaike Based Metrics. More specifically, let M be a model learned from data X.
Let π(M) be the number of parameters to be inferred in the model M and L be the

Fig. 3. Optimal fit (on the left) against O-Diversity maximizing sampling (on the right).
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maximum value of the likelihood function for the model; i.e., L(M, X) = P (X |θ, M),
where θ are the optimal parameter values for the likelihood function. Considering
these definitions, the AIC penalty for a model results in the following:

AIC(M, X) = 2π(M)− 2 ln L(M, X).

From the definition, we can see how the AIC aims to find a balance between the
number of parameters to be inferred (which is a measure of the model complexity)
and the model’s ability to explain the data. The AIC penalizes models with a large
numbers of parameters. The model complexity (i.e., the number of model parame-
ters) that the AIC as previously defined relies on is rather limited. To overcome this
challenge, we introduce the Complexity Guided Akaike information (C-AIC) that
makes use of the complexity rules in Table 1 to associate a complexity penalty for
each model in the model dictionary, namely

C-AIC(M, X) = 2C(M)− 2 lnL(M, X).

Intuitively, C-AIC replaces the term π(M) (the number of free parameters) with
the complexity measure, C(M), that considers both the number of free parameters,
but also the interpretability of the model).

3.2. Sampling in the action space to reconstruct J(x, Y | Y = y)

Constructing ensembles is very important to make effective use of available historical
data for scenarios t{Y = y�}L�=1 occurred in the past. The main aspect for this
response estimation is to efficiently sample in the space of the candidate solutions,
X for several scenarios {Y = y�}L�=1. The criteria proposed in Sec. 3.1 are at
the basis for the reconstruction of such ensembles. In this regard, weighted and
additive models start from fitting several surrogates over the entire parameter space,
perform an evaluation of the fitting quality, and then compute static weights over
the parameter space to maximize a measure of the fit or prediction error (Muller
and Piche, 2011; Goel et al., 2007; Meng and Ng, 2015). In either case, there is no
mechanism to explicitly control the interpretative complexity. In addition, most of
the approaches are not sequential in nature thus preventing incremental learning.

While several space partitioning approaches have been proposed in ML, our focus
is fundamentally different: rather than training a classifier with given observations,
we are interested in understanding parameter configurations that are worth sam-
pling and which scenarios are worth exploring. We argue that dynamic and adaptive,
instead of static, weighting structures should be used for generating an appropriate
ensemble, where weighting is performed not only based upon fitting, but also the
complexity of the resulting model. In fact, a complex system may show completely
different patterns in different regions of the parameter space. To ensure that the
ensemble is created in a way that properly covers and describes the underlying phe-
nomenon, GOLF starts by sampling from the complete parameter space as a whole
and, as needed, the same space is partitioned into finer regions. The basic idea is
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that, if all current partitions match the target quality requirement or the offline
simulation budget has been consumed in its entirety, the process ends. Specifically,
we propose a novel rank stability-based strategy, which selects the partition with
the worst rank-stability (under the appropriate penalty function, see Sec. 3.1) for
further investigation.

Notation and Definitions. Let us be given a complex system, S, with N input param-
eters, such that the ith input parameter can take Ii distinct values. Also, let X be
the set of offline simulation that have been selected to be executed so far. Also,
let P = {P1, . . . , Pp} be a set of non-overlapping partitions of the input parame-
ter space, such that

⋃
Pi∈P Pi = I1 × I2 × · · · × IN (thus guaranteeing the desired

coverage). Now let Xi denote the (non-empty) subset of X that fall in partition Pi.
Now, consider a specific model dictionary (we saw model dictionaries for the defini-
tion of complexity in Sec. 3.1) M = {M1, M2, . . . , Mk} such that each model Mj is
associated with a penalty pij , where i is the index of the specific penalty criterion
(for example we could use the C-AIC from Sec. 3.1).

Rank Stability-Based Partitioning. Let us assume that the partition Pi is selected
for further investigation and we extend the simulation set, Xi, with new simulation
instances, which we refer to as ΔXi. Let us denote the extended simulation set as
X′i = Xi ∪ΔXi. This new simulation set has associate a revised penalty, p′ij for each
model Mj ∈ M. With such information, it is possible to define the rank stability
as RS(Pi, Xi, ΔXi), for each partition Pi ∈ P related to the simulation set, Xi, and
new instances, ΔXi, as

RS(Pi, Xi, ΔXi) =
∑

Mj∈M
in decreasing order of penalty pij

(
minj p′ij − p′ij

)
/2

log2 j + 1
,

where minj p′ij is the minimum penalty computed for all models in M. Intuitively,
RS(·) is analogous to the normalized discounted cumulative gain (NDCG) of the old
model ranking as a function of the new model ranking and quantifies if the additional
simulation samples for the given partition result in a major shift in the ranking of the
models in the model dictionary. The numerator re-normalizes the model penalties,
such that the models with lower penalty are given higher weights in measuring rank
stability. Intuitively, if the rank stability is low, it means that the current partition
is hard to describe with Xi or X′i. In contrast, if the rank stability is high, it means
that additional simulations do not impact the ranks of the models in the dictionary.
In such a circumstance, additional simulation samples for the given partition may
not be necessary. Once a partition, Pi is picked, GOLF assigns a set, ΔXi, of new
simulations to the partition. Once these simulations have been executed, models
within M, are re-ranked based on the revised set, X′i of simulations for the given
partition and a new rank stability measure, rsi = RS(Pi, Xi, ΔXi) is computed for
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the partition. If rsi is less than a predefined threshold r̄s, the partition is not rank-
stable and needs to be further partitioned. However, if rsi ≥ r̄s, Pi may or may not
need further partitioning, a look-ahead perspective can be used to take this decision.

Look-ahead partitioning. In particular, (a) Pi is first virtually split into sub-
partitions and (b) a model ranking is obtained for each sub-partition based on
the resulting simulation instances allocation; (c) next, the rank stability of each
sub-partition Pi is computed and compared with the reference threshold r̄s: if none
of the partitions Pi ∈ P fail the rank stability test, it means the order of the models
obtained when considering the sub-partitions is aligned with the order of the models
for the original partition Pi. In this case, the original partition Pi does not need to
be further split; if a partition Pi ∈ P fail the rank stability test, it is composed of
heterogeneous regions and, thus, needs to be further split into smaller partitions.
When the process ends (either due to budget completion or rank-stable partitions),
we have a simulation ensemble and a ranked list of instantiated models for each
partition. One advantage of this approach is that the user can be provided with,
not one, but several top alternative models as candidates for each partition.

3.3. Learning the distribution g(Y ) := (x∗ | Y ) ∈ argmaxx∈X
J(x, Y ):

A Large Scale Bayesian Optimization approach (LSBO)

While the methods in Sec. 3.2 target the reconstruction of response surfaces to
represent our cost function, J(x, y) for past historical scenarios, this part of our
work focuses on scenarios that have never occurred. In this case, we need to con-
sider x, i.e., the configuration parameters, as well as the “scenario” parameters
y. Specifically, we develop a method to reconstruct the optimal condition for any
parameter setting that we wish to test as possible future (i.e., the action/strategy
that the decision maker would plausibly apply). If we refer to Y as the parame-
ter setting describing the future condition of the complex system, simulating the
function J(x, Y |Y = y) requires us to “reconstruct” the unknown interventions
and strategies in the future, for which we need to construct meaningful sample
paths. We propose to tackle this problem in the form of a large scale stochastic
optimization and we propose the Large Scale Bayesian Optimization (LSBO) algo-
rithm. Let us refer to the function x∗(Y ) ∈ argmaxx∈X

J(x, Y ). Sampling in the
space of parameter settings to learn x∗(Y ) is difficult due to the size of the set of
parameters Y , which makes any approach based on enumeration impractical. At
the same time, the sampling algorithms such as those presented in Sec. 3.2 would
not help with this dimensionality issue. This requires a novel and transformative
sampling paradigm. In this work, we propose a projection method that helps dealing
with the problem of sampling in high dimensions. The proposed approach has two
main components: (1) random adaptive projection schemes that allow to iteratively
sample in lower-dimensional spaces; (2) optimal samplers that can quickly return
an estimate of x∗(Y ).
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Random Projections. Let us refer to the parameter space as Y ⊆ R
d where d is a

very large value. At this point, we want to partition the space to obtain a satisfactory
model for x∗(Y ). While the criteria defined in Sec. 3.1 are still useful in this setting,
we cannot afford to sample from the original space due to the size of Y and the fact
that optimization needs to be solved for each parameter configuration. We propose
to sequentially decompose the space Y into a number of M subspaces, all sharing
one dimension s (to be chosen) Y

s ⊆ Y, s = 1, 2, . . . , where M can be dynamically
optimized and

⋃M
s=1 Y

s ⊇ Y. Figure 4 graphically shows the main idea behind
parameter space slicing. Once projections have been established, we can perform
“local” optimization. As a result, each local algorithm returns a projected proposal
of the distribution of the optimal selection as a function of the subset of considered
parameter settings. We can refer to this information as ĝ(Ys) and we need to find
an appropriate way to “pass” this estimate to the other projections (Fig. 5). In
this regard, we propose the integrated complexity along with the integrated diversity
indicators to communicate each projection to which scenario value they should focus
for improving the estimation of ĝ(Y). The reason to extend the criteria presented in
Sec. 3.1 is that we need to integrate with respect to the shared dimension. In other
words, we need to provide the most interesting parameter setting, which is also the
most robust with respect to the shared dimension.

Optimal Sampling. In relation to the second item, it is important to highlight
that obtaining an evaluation of x∗(Y ) implies a full optimization, therefore we
need to carefully allocate the budget in an appropriate way. Even if this phase of
the approach is offline, solving a complex non-linear optimization for each point
in the scenario space would be computationally unattainable. In this direction, we

Fig. 4. Scenario space “slicing”. The original space has 3 dimensions. The main idea is to consider
M = 2 subspaces of 2 dimension each. Similar to Zhang et al. (2017) we decompose the space in
a way such that 1 dimension is shared between the different projections, this allows us to increase
the sampling density.
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Fig. 5. Information exchange between parameter slices.

propose to extend the multi-fidelity algorithm presented by the authors in Inan-
louganji et al. (2018), and further detailed in Sec. 3.4, in order to consider the
presence of a low fidelity solution, which implies a completely different algorithmic
framework. Nonetheless, the promising results in Sec. 4.2 give us confidence of the
viability of the approach. Even in the “decomposed space” (Zhang et al., 2017), a
significant challenge in budget-constrained simulation ensemble generation remains:
different parameter configurations and different models in the model-dictionary can
have different associated cost/quality trade-offs. While the ensemble generation can
be interpreted as a generalization of the Optimal Computing Budget Allocation
problem (initially developed in Chen et al. (2000)) for discrete optimization, sev-
eral key challenges remain unsolved in this context (Kandasamy et al., 2016; Ryzhov
et al., 2010; Benamara et al., 2016): (a) how much budget to dedicate to each iter-
ative ensemble generation process and (b) how to allocate budget to the different
parameters configurations, when different conditions lead to substantially different
simulation costs in terms of required computational time. In our preliminary work
(Pedrielli and Ng, 2016), we have shown some results in this direction, but two
main challenges still remain: (1) how to choose the number of iterations (i.e., how
much to sample “now” and how much to reserve for “later”), (2) how to allocate
the budget among different candidate points and parameter configurations for a
given total budget. We propose a novel formulation of the budget allocation in the
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form of stochastic control, with the objective function considering the cost of sam-
pling, derived from the choice of the sample set, and the cumulative gain in terms
of improved accuracy conditional on the current sampling decision and cumulated
over all iterations.

3.4. Online decision making through ordinal learning

Given the size of the configuration space and the scenarios, the probability that
the LAD ensemble contains the current configuration (i.e., the present was already
observed in the past) is zero. However, the information contained in the simulation
ensembles can be valuable in helping to learn the outcomes of decisions in an online
manner.

A water distribution network example. To give a first conceptual idea of the pro-
posed approach, we refer to an example in water infrastructure management. Let us
imagine that we want to optimally configure a water network regulation and pump
schedules to satisfy dynamically varying demands for multiple types of consumers
(private, industrial). The system has eight pumps of three types transmitting water
to 11 types of customers (11 demand profiles). There are a total of 10,500 configura-
tions obtained by selecting different possible transmissions, pumps allocation, and
alternative schedules. The offline data (LAD) consist of the simulation results for all
10,500 configurations under a single value of demand from the different customers.
Demand is known for the past, but clearly not for the future. Therefore, once the
demand for supply becomes known, we are interested in learning the performance
of different configurations such that we can adopt the optimal configuration. The
left plot in Fig. 6 shows the performance levels of all 10,500 configurations, which
is obtained through extensive simulations that cannot be done online. We observe
the large variances in performance and the consequent challenge in search such a
configuration space (x-axis in Fig. 6).

Fig. 6. (Color online) Online ordinal learning of 10,500 configurations using look-ahead data versus
actual performance under observed parameters setting. The red smooth curve shows the ordered
performance of all configurations given by look-ahead data (1 single parameter configuration is
considered). The blue jagged band shows the actual performance under the observed parameters
setting.
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We propose a highly effective ordinal learning (OL) method to learn from LAD.
OL orders all 10,500 configurations based on the LAD performance, already avail-
able from offline phase, selecting the configuration with best performance (the
leftmost one in the right plot of Fig. 6) as the best decision for the current sce-
nario. While the selected decision is not necessarily optimal, it has near optimal
performance. OL is extremely simple and fast to execute for online applications
and it is also independent of the dimensionality of the configuration space, and
thus is generally amenable. This preliminary result demonstrates that OL may be a
highly efficient and effective online learning method to synthesize LAD with current
data.

In the illustrative example above, offline LAD for a configuration x is only
available for a specific parameter setting Y = y�. However, LAD driven sampling
generates many more LAD for a specific selection x. AEOL is what we propose to
make use of LAD in online decision making extending our preliminary approach
depicted in Fig. 6. The approach enabling to embed LAD ensembles instead of a
single parameter configuration is to determine a weight assigned to different LAD
ensembles based on their “relevance” with respect to the current observational data.

J(x; θ |Y = y) =
L∑

�=1

w�(x)[α�(x; θα)JY =y�
(M�(x; θM); θy�

|Y = y�)

+ B�(M�(x; θM); θB,y�
|Y = y�)], x ∈ X. (2)

In our preliminary work (Inanlouganji et al., 2018), we assumed that JY =y�
and J ,

i.e., the LAD ensembles and observational data, as well as the bias process B� repre-
senting the distance between JJY =y�

and the observed response J can be modeled
as GP. In model (2), θLF and θB refer to the vector of the hyper-parameters needed
to construct a predictor for the GP JY =y�

and B, respectively. In Eq. (1), we have
L LAD ensembles. The multiplier α�(x; θα) is generally a function of the location
x and is parametrized through θα. Also, M(x; θM) represents a general mapping
function from the look-ahead scenario space to the current observational space. This
mapping function is parametrized through θM, which requires the development of
learning mechanisms to be efficiently estimated. Finally, w�(x) represents the adap-
tive ensemble weight that associates a different importance score to a look-ahead
scenario used in the prediction of the unknown function J(x; θ |Y ). Section 3.4.1
illustrates the methods we have explored so far to estimate the model in (2), while
Sec. 3.4.2 focuses on the iterative algorithm for the online selection of few expensive
simulations together with the conditional selection of offline generated data in order
to quickly solve the online optimization problem.

3.4.1. Estimation of the multi-fidelity model

To derive the model in Eq. (2) we will have two separate sets of sampled points,
{XY = y�

}L�=1 representing the collection of points sampled in scenarios Y = y� that
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differ from the target scenario of interest. These scenarios can be sampled offline
according to the methods introduced in Secs. 3.2 and 3.3. Therefore, concerning the
online phase, we can see this set of points and the related function evaluations as
available at “zero cost”. The online phase is therefore concerned about: (1) under-
standing which points in the offline set represent valuable information with respect
to the current scenario, (2) sample a restricted set of points, which we will refer
to as XB, for the current scenario to add to the offline evaluations to improve the
decision making process. From an online perspective, {XY =y�

}L�=1 is the “cheap-
est” set since all the evaluations are available at the moment when the scenario of
interest is revealed. Therefore, we will generally have |XB| � |{XY =y�

}L�=1|. Given
a desired prediction location x0, to estimate B̂(x0) |XB; θB, which, for simplicity,
will be referred to as B̂(x0) from now on, we first obtain the elements of observed
bias vector, b using Eq. (3) below

b(x) = JY =y(x)−G({JY =y�
(M�(x; θM ); θy�

|Y = y�)}L�=1), x ∈ XB, (3)

where G(·) is an appropriate function of the several offline data available at a specific
location. Such a function has the role to associate larger weight to using observed
bias, b vector as the response, a Gaussian process can be trained to estimate the
bias at any given solution x0 as follows:

B̂(x0) ∼ N(μB(x0), σ2
B(x0)), (4)

μB(x0) = cT (x0, XB)K−1b, (5)

σB(x0) = K(x0, x0)− cT (xs, XB)K−1c(XB , x0). (6)

For each offline scenario that we have tested, we estimate ĴY =y�
(x0) |XY =y�

;
θY=y�

, considering all the configurations that have been sampled according to the
methods in Sec. 3.2, i.e., XY =y�

. We will refer to these models, for simplicity of
notation, as Ĵ�(x0). Specifically, for each scenario Y = y�, we use XY =y�

as input
matrix and JY =y�

(x : x ∈ XY =y�
), the vector of the offline response values for a

specific scenario and the locations in the set XY =y�
, as the output. A Gaussian

process model can be estimated to obtain the following predictors:

ĴY =y�
(x0) ∼ N(μY =y�

(x0), σY =y�
2(x0)), (7)

μY =y�
(x0) = cT (x0, XY =y�

)K−1JY =y�
(x : x ∈ XY =y�

), (8)

σY =y�
(x0) = K(x0, x0)− cT (x0, XY =y�

)K−1c(x0, XY =y�
). (9)

Finally, we can estimate Ĵ�(x0) using a linear combination of the two predictions
in (4) and (7), obtaining

ĴY =y(x0) ∼ N(μY =y(x0), σY =y
2(x0)), (10)

μY =y(x0) = Gμ({μY =y�
(x0)}L�=1)+μB(x0), (11)

σY =y
2(x0) = Gσ({σY =y�

2(x0)}L�=1) + σB
2(x0). (12)
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It is important to highlight again how, to guarantee adequacy of the additivity
of the processes, we should have {XY =y�

}L�=1 ∩ XB = ∅. While this is not the
case, we have |XB| � |{XY =y�

}L�=1|, thus decreasing the impact of the depen-
dency effect generated by the sampling policy. As a result, the sampling process
for the offline observations and the one for the learning of the offline/online depen-
dency do not overlap. We propose a third model to guide the decision whether
to perform an online sampling decision or not. Specifically, we derive the pre-
dicted offline response using the same relationship as in Eq. (3), but with the
focus of estimating the offline response, i.e., we look at the relationship in (2) as
JY =y�

(x; θY =y�
) = G−1(JY =y(x; θY =y)−B(x; θB)), x ∈ X . While the B compo-

nent is the same as in (4)–(6), ĴY =y(x; θY =y�
) is estimated only using the online

evaluations JY =y|XB
. In order to distinguish this predictor from the one in Eq. (10),

we refer to it as ĴY =y|XB
(x; θY =y�

), and we refer to this alternative estimation of
the offline response model as ĴY =y�|XB

and we derive it as it follows:

ĴY =y�|XB
(x0) ∼ N(μY =y�|XB

(x0), σY =y�|XB

2(x0)), (13)

μY =y�|XB
(x0) = μY =y�|XB

(x0)− μB(x0), (14)

σY =y� |XB

2(x0) = σ2
Y =y�|XB

(x0) + σ2
B(x0). (15)

We highlight that, different from the prediction in (10)–(12), the derivation for the
conditional density is not an exact result, because we do not account for the inherent
dependency between the processes ĴY =y and B̂ generated by the fact that the set
of online sampled points XY =y and the set of sampled points in the bias set XB

are the same.

3.4.2. Online sampling algorithm

Let us consider a single offline scenario Y = y�. We investigate two versions of the
algorithm for online sampling: (1) the offline data driven selection and (2) expensive
online selection. The first version uses the offline evaluation at the best location up
to iteration k, i.e., x∗k,Y =y�

∈ argminx∈XY =y�
JY =y�

(x), where the achieved low-
fidelity function value is referred to as Jb

k,Y =y�
and Xk,Y =y�

is the set of locations
that have been selected from the offline data set, up to iteration k. The second
approach uses the expensive online evaluation at the best location up to iteration k,
i.e., x∗k,Y =y ∈ argminx∈XY =y

JY =y(x), where the achieved function value is referred
to as Jb

k,Y =y and Xk,Y =y is the set of locations that have been sampled online. In
this work, we adopt the Expected Improvement (EI) as sampling criteria (Locatelli,
1997; Jones et al., 1998). The EI is a common sampling criterion in surrogate-based
optimization and its derivation is discussed in Jones et al. (1998).

Offline data driven selection. The improvement at any location, x, as I(x) =
max(Jb

k,Y =y�
− Ĵk,Y =y�

(x), 0), where Ĵk,Y =y�
(x) is the prediction obtained from

model (7) at iteration k, when Xk,Y =y�
points have been selected from the offline
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data set. The EI results

x∗
k = argmax

x∈X\Xk,Y =y�

E[I(x)] =
∫ Jb

Y =y�

−∞
(Jb

Y =y�
− ĴY =y�

(x))+f(ĴY =y�
(x))dy,

(16)

where Xk,Y =y�
is the set of selected points from the offline data set, f(ĴY =y�

(x)) is
the density function of the predicted offline response (in this case normal with mean
and variance calculated as functions of candidate solution, x, using Eqs. (8) and
(9)) (Criterion 1 in Algorithm 1, Step 3.1). Note that for the second version of the
algorithm, a similar equation can be derived to calculate the EI, by simply replacing
Jb

Y =y�
with Jb

Y =y, ĴY =y�
(x) with ĴY =y(x) and Xk,Y =y�

with Xk,Y =y (Criterion 2 in
Algorithm 1, Step 3.1). In addition to choosing the location where sampling should
be performed (i.e., a candidate solution), the GOLF framework tries to determine
whether expensive online sampling is required. We devise a statistical certificate of
the relationship between the low and high-fidelity models, which we present in this
section. For the candidate point at iteration k, x∗

k, we want to certify the validity
of our model in Eq. (2) representing the relationship we constructed between offline
and online models. We achieve this objective with the following statistical test:{

H0 : ĴY =y�
(x∗

k) ∼ N(μY =y�|XB
(x∗

k), σY =y�|XB
(x∗

k))

H1 : Otherwise

→ Q =
JY =y�

(x∗
k)− μY =y�|XB

(x∗
k)

σY =y�|XB
(x∗

k)
≥ −Zc. (17)

The idea behind this test is to check whether the relationship we have assumed
between offline and online models is valid at this location. If the null hypothesis in
Eq. (17) cannot be rejected, there is no need for online sampling. Otherwise, online
sampling needs to be performed to update the offline observations predictor using
Eq. (7), and the online predictor in Eq. (10). The pseudocode for the explained
procedure is presented in Algorithm 1.

4. Preliminary Results

In this section, we show some preliminary results for the learning and optimization
methods to demonstrate the potential of our new framework. In particular, we
first focus on the offline methods for the derivation of models from past scenarios
(Secs. 3.1 and 3.2) that are the input to the online phase. Subsequently, Sec. 4.2
focuses on a proof of concept for the online optimization phase showing numerical
performance of the methods in Sec. 3.4, but using a single offline scenario.

4.1. Model learning through complexity

In this part of the experimentation, we focus on the proposed methods for partition
learning together with model estimation providing a validation of the components in
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Algorithm 1
Initialization

Step 0 k = 0; XB,k= ∅, XY =y�,k= ∅, JY =y|XB
= ∅,

JY =y�|XY =y�
= ∅, JY =y|XB

= ∅.
Set the initial number of samples n0B , and n0Y =y�

, using
a Latin hypercube design.
Set the maximum number of online simulations CBY =y;
Set XB,k ← {xi}n0,B

i=1 , update XLF,k ← {xi}n0,LF

i=1 ;
While (CBY =y > 0)

Expensive update
Step 1 XB ← XB,k ∪XB;

JY =y|XB
← JY =y|XB

∪ {JY =y|XB
(x); x ∈ XB,k},

JY =y�|XB
← JY =y�|XB

∪ {JY =y�|XB
(x); x ∈ XB,k};

Evaluate b(x)← (JY =y|XB
(x)− JY =y�|XB

(x)), x∈XB,k;
With JY =y|XB

, JY =y�|XB
, XB construct:

B̂ ∼ GP(μB, σ2
B) using (4)–(6);

Cheap Update
Step 2 XY =y�

← XY =y�,k ∪XY =y�
;

JY =y�|XLF
← JY =y�|XLF

∪{JY =y�|XLF
(x); x ∈ XY =y�,k};

With JY =y�|XY =y�
, XY =y�

: ĴY =y�
∼ GP(μY =y�

, σY =y2
�
)

using (7)–(9);
Criterion 1 Criterion 2

Step 3.1 Compute EI(x) using Eq. (16), set: Compute EI(x) as:
x∗

k ← argmax
x∈X

EI(x) x∗
k ← argmax

x∈X

EI(x)

=
∫ Jb

Y =y�−∞ (Jb
Y =y�

− ĴY =y�
(x))+ =

∫ Jb
Y =y

−∞ (Jb
Y =y − ĴY =y(x))+

f(ĴY =y�
(x))dJ f(ĴY =y(x))dy

Step 3.2 Evaluate JY =y�
(x∗

k);
Update JY =y�

b←minx∈XY =y�
∪XB

JY =y�|XY =y�
∪XB

, XY =y�,k+1 ← x∗
k,

Certificate:
Estimate ĴY =y�|XB

(x∗
k) using Eqs. (13)–(15);

Use JY =y�
(x∗k) and ĴY =y�|XB

(x∗k) in Condition (17) holds;
If (Condition (17) holds TRUE)
XB,k+1 ← {};
Go to Step 2
Else
XB,k+1 ← x∗k;

, CBY =y ← CBY =y−1;
Go to Step 1
End

END
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Fig. 7. Example of complex function to identify.

Secs. 3.1 and 3.2. Figure 7 represents the output from a continuous complex system.
The true function, supposed to be unknown for the sake of the experiment, is:

f(x1, x2) =

{
Λ(x1, x2)(e · sin(8x1) + 5 · sin(3x2)) If x1 < x2,

(1 − Λ(x1, x2))(e · sin(8x1) + 5 · sin(3x2)) If x1 ≥ x2,

where Λ(x1, x2) is an exponential smoothing term, which guarantees continuity at
x1 = x2. Different simulation ensemble creation strategies sample the parameter
space differently, thus potentially leading to different degrees of fit and model com-
plexity. This needs to be evaluated to compare different strategies. In this section,
we use the following measures of fit and complexity:

• Error : For each partition, we define the average error as absolute difference
between the ground truth and the predicted output of the system. This differ-
ence is multiplied by the volume of the partition. Finally, all the volume-weighted
errors are summed up, resulting in the error measure over the parameter space.
• Complexity: We also assess the complexity of the resulting models. For this pur-

pose, we first compute the complexity for each partition using the rules in Table 1.
Then the obtained value is multiplied by the volume of the partition. The volume-
weighted values are summed across partitions resulting in final complexity mea-
sure. To ensure that the sampling strategies do not return a very large number
of low-complexity models, we also use a partition weighted complexity measure,
pcomplexity, obtained by multiplying the overall complexity by the number of par-
titions resulting from the sampling strategy: low pcomplexity values indicate a small
number of partitions with low complexities.
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(a) (b)

(c)

Fig. 8. Preliminary results on sampling based on different criteria. (a) Obtained surface complexity
and fairness with partitioning based on R2, complexity-driven R2, complexity driven R2 with
look-ahead partitioning, AIC, complexity driven AIC and look-ahead complexity driven AIC. (b)
Obtained region complexity and number of regions with partitioning based on R2, complexity-
driven R2, complexity driven R2 with look-ahead partitioning, AIC, complexity driven AIC and
look-ahead complexity driven AIC. (c) Error obtained for the different algorithms.

• Fairness: This metric is designed to make sure that the fitness or complexity are
uniform across the parameter space, formally: fairness = PP

Pi∈P exp(ρi)
, where ρi

is the error (or complexity) value (as defined above) for the partition, Pi ∈ P.
This formula is analogous to the well-known f-score measure (Selçuk Candan and
Maria, 2010), and it returns a high score when all the partitions have similarly
high fits (or low complexities).

Figure 8 shows preliminary results for the alternative sampling strategies, includ-
ing purely fit-based, AIC-based, and axiomatic (complexity driven). In particular,
C-AIC replaces the number of coefficients in the AIC equation with the complexity
function C (Table 1), and C2-AIC replaces them with (C · r) where r is the size of
the region corresponding to each sample.

Figures 8(a)–8(c) show the complexity, pcomplexity, and error results for different
penalty measures and split strategies: (a) normalized R2 (NR) as the baseline; and
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three variants of the baseline: (b) complexity-guided NR (CNR); (c) NR with look-
ahead; (d) CNR with look-ahead; the proposed GOLF complexity-guided parameter
space sampling algorithm (CPSS in Fig. 8(c)) using: (e) AIC; (f) complexity-guided
AIC (C-AIC); and (g) complexity-guided and coverage-weighted AIC (C2-AIC). As
we see in Fig. 8(a), the baseline (pure normalized R2 (NR) based approach) leads to
a very high model complexity. Combining NR with complexity-guidance and look-
ahead based split (CNR w/LA) significantly reduces model complexity and improves
fairness. We observe that the last three approaches (AIC, C-AIC, and C2-AIC),
where we apply rank-stability and look-ahead by default, match the complexity
performance of the CNR w/LA. As expected, we obtain the best complexity and
fairness outcomes using C2-AIC, which leverages complexity-guided and coverage-
weights, along with rank-stability and look-ahead for split decisions. Figure 8(b)
shows how, also in terms of the partition-weighted complexity (pcomplexity), the
complexity-guided and coverage-weighted strategies with rank-stability and look-
ahead, lead to better models, despite the fact that the number of resulting partitions
is generally higher than the pure NR strategy.

Figure 8(c) shows the impact of the different strategies on the degrees of fitness
of the resulting models. In particular, the pure NR strategy leads to a low error
rate (0.14); however, it also leads to low (0.43) error fairness. It is interesting to
observe how the low error rate, 0.14, is also matched by the C2-AIC strategy and
that C2-AIC also provides a significantly higher degree of fairness (0.68), indicating
that, the proposed strategies are also effective in terms of the goodness of fit of the
resulting models.

Overall, Fig. 8 reports promising results showing that, when coupled with appro-
priate quality measures, sequential sampling can lead to improved fit, while allowing
for increased explanatory power.

4.2. Slicing and projection mechanism for offline LSBO

In this section, we show the validation of the method for slicing and projection in
high-dimensional scenarios space presented in Sec. 3.3. The problem of black box
optimization in large dimensions has recently attracted the attention from several
authors and, herein, we compare our slicing and projection through decomposition
with state of the art algorithms: REMBO (Wang et al., 2013), and the Bayesian
Optimization (BO) with Additive GP recently proposed in Wang et al. (2017).
Existing high-dimensional BO paradigms aim to address two issues: (a) identifying
a low-dimensional structure (LDS) and (b) efficiently optimizing over an acquisition
function (AF). REMBO, for instance, assumes there is an effective low dimension-
ality that can be specified and randomly embedded into, to accomplish both of
these. Similarly, additive Gaussian process BO (add-GP) aims to learn the LDS
through statistical modeling techniques such that a decomposition of the objec-
tive function can be exploited to efficiently optimize the AF. The proposed LSBO
method, goes beyond these by providing additional degrees of freedom towards
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exploiting hidden problem structures, thus, offering a shift from high-dimensional
objective function projection and AF likelihood decomposition, to low-dimensional
BO/AF optimization with exact sampling. This leads to computationally tractable
AF optimization even when rich problem structure is present, an inherent trade-off
in the current paradigm. While not explored in the current submission, this fur-
ther enables, decomposition methods (such as dependency/factor graph learning or
Bayesian learning via Gibbs sampling/structured kernels) to identify appropriate
subspace partitions and communication patterns.

Scalability of LSBO against Competitors. Figures 9(a) and 9(b) above clearly
show that LSBO is the best competitor both in terms of the number of function
evaluations needed and the computational work to achieve a desired function target

(a) (b)

(c)

Fig. 9. Performance of LSBO on several benchmark problems. (a) Average function evaluations
to observe a function value of 0.01 or less, ±2 standard errors, over 50 replications. (b) Average
wall clock time to observe a function value of 0.01 or less, ±2 standard errors, over 50 replications.
(c) Average cancer detection performance of best trained neural net, ±2 standard errors, with
constrained wall clock.
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accuracy (i.e., less than 0.01 when the true global minimum is 0). The results also
confirm that LSBO scales significantly better than the competitors: the accuracy
and execution time gains provided by LSBO increases as the problem dimension-
ality increases. LSBO’s computational gain primarily comes from space decompo-
sition that, by construction, leads the algorithm to perform only low-dimensional
optimizations. Note, when the additive assumption fails, the computational effort
required to solve for the likelihood function increases dramatically for Add-GP, as
seen in Fig. 9(b).

Application of SCOOP in Neural Network Hyper-Parameter Search. We test the
application of LSBO in the construction neural nets to classify cancer data. Pat-
tern neural nets were trained with Matlab’s neural network toolbox, and publicly
available classification data ( https://github.com/zi-w/Structural-Kernel-Learning-
for-HDBBO). As competitors, LSBO, EGO, and Add-GP were tested for varying
dimensional versions of the neural net search problem, with decision variables being
the number of nodes in each layer and the number of decision variables (dimension)
corresponding to the number of layers. A wall clock time constraint was imple-
mented for each problem dimensionality encompassing both neural net training
and algorithm search times (600, 1,800, and 3,600 s for 6, 9, and 15 dimensions,
respectively).

Figure 9 illustrates the average best accuracy achieved by each algorithm across
20 replications. Two standard error confidence intervals are reported. The results
show that LSBO significantly outperforms both EGO and Add-GP in terms of solu-
tion accuracy, as the number of problem dimensions increases. Note that Add-GP
shows non-monotonic performance behavior: an increase in the number of prob-
lem dimensions (layers in the neural net) does not necessarily imply that the best
observed value will also increase. This is due to the exponential increase in the time
Add-GP requires in structured kernel learning (as highlighted by Fig. 2), which
consumes significantly more time for deciding hyper-parameters of the neural net
and leaves significantly less time for actual training of the classifier with the chosen
hyper-parameters.

4.3. Generalized ordinal learning with single offline scenario

at a time

In this section, both versions of the proposed algorithm for the online learning phase
(Sec. 3.4) will be evaluated using the Efficient Global Optimization (EGO) method
which will be used as the benchmark to demonstrate the benefit of accounting for
offline information. In fact, EGO only considers online generated data. First, the test
function and different offline models of interest are introduced; then, the numerical
experiments and results are discussed. For the test function, as the optimal solution
is known, the algorithm stops whenever at least one of the following conditions

is met: (1)
Jb

Y =y−J∗
Y =y

J∗
Y =y

≤ 0.01; (2) ItrY =y>= 500; (3) ItrY =y>= 50. Here ItrY =y�

and ItrY =y are the number of offline and online samples, respectively. The function
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Table 2. Different offline-data driven models.

Offline model Model form Correlation
with the true model

JY =y1
(x) −2

Qd
i=1 sin(πxi) 0.87

JY =y2
(x) −0.8

Qd
i=1 sin(5πxi) 0.49

JY =y3
(x) 2

Qd
i=1 sin(πxi) −0.87

JY =y4
(x) 0.8

Qd
i=1 sin(5πxi) −0.49

JY =y(x, y) below will be considered as the true model where xi ∈ [0.1, 1] (Zabinsky
et al., 2010)

J(x, Y |Y = y) = y1

d∏
i=1

sin(πxi)−y2

d∏
i=1

sin(5πxi). (18)

With y =
[y1 = −2.5
y2 = −1.0

]
. Table 2 reports four different offline generated models that we

used along with their correlation coefficient characterizing their dependency with
the true, unknown, model.

The proposed algorithm in its two versions along with the benchmark EGO
(Jones et al., 1998) are used to optimize the test function introduced above and
their performance is compared. EGO only samples in high-fidelity space and works
independently of the low-fidelity model of choice to be used in the proposed multi-
fidelity algorithm. All algorithms were run for 50 macro-replications and we con-
sidered, as performance metric, the relative distance between the reported optimal
solution and the real optimal solution of the true model, i.e., ‖x̂

∗
i−x∗‖
‖x∗‖ , where x∗ is

the global optimal solution of the high-fidelity model and x̂∗i is the optimal solution
reported by the algorithm at the ith macro-replication. We also report the number
of online simulations ran before convergence/stop of the algorithms over different
macro-replications as “Online Simulations” in both Tables 3 and 4.

Table 3. Statistics on optimality distance for the first version of proposed algorithm.

Low-fidelity model Dimension Proposed algorithm EGO

‖x̂∗
i −x∗‖
‖x∗‖ #Online simulations

‖x̂∗
i −x∗‖
‖x∗‖

Average Std err Average Std err Average Std err

JY =y1
(x) 3 0.07 0.01 2.28 0.17 0.17 0.02

4 0.04 0.01 2.76 0.23 0.16 0.02

JY =y2
(x) 3 0.00 0.00 2.38 0.11 0.17 0.01

4 0.00 0.00 2.30 0.10 0.16 0.02

JY =y3
(x) 3 0.09 0.01 3.18 0.28 0.15 0.01

4 0.05 0.01 2.86 0.29 0.14 0.01

JY =y4
(x) 3 0.00 0.00 2.38 0.11 0.17 0.01

4 0.00 0.00 2.42 0.16 0.16 0.02
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Table 4. Statistics on optimality distance for the second version of proposed algorithm.

Offline model Dimension Proposed algorithm EGO

‖x̂∗
i −x∗‖
‖x∗‖ #Online simulations

‖x̂∗
i −x∗‖
‖x∗‖

Average Std err Average Std err Average Std err

JY =y1
(x) 3 0.00 0.00 2.02 0.11 0.18 0.01

4 0.00 0.00 2.08 0.07 0.17 0.02

JY =y2
(x) 3 0.13 0.02 15.02 0.97 0.10 0.02

4 0.16 0.01 31.86 1.21 0.03 0.01

JY =y3
(x) 3 0.00 0.00 2.02 0.11 0.18 0.01

4 0.00 0.00 2.60 0.19 0.15 0.02

JY =y4
(x) 3 0.12 0.02 14.78 1.02 0.09 0.02

4 0.17 0.01 31.82 1.43 0.04 0.01

For each macro-replication, we ran the proposed algorithms and EGO with the
same random number seed. Upon observing convergence of our algorithm, we also
stopped EGO, i.e., EGO could run as many online simulations as those needed by
the GOLF counter-part to converge. It is important to highlight how EGO, as any
traditional optimization tool, only uses the online generated information to take a
decision, while the GOLF algorithms uses a large amount of offline evaluations of
the functions JY =yi

(x), i= 1, 2, 3, 4. Table 3 shows the results obtained from the
first version of the algorithm that calculates EI over the predicted online (true)
response. From the results, it can be observed that our approach outperforms EGO
no matter which offline model is used. This leads us to arguing that it is compelling
to implement the version of the algorithm with multiple offline models to maximize
the performance.

Also, the gap between the performance of the first version of the algorithm and
EGO is larger when second and fourth offline models are used. While the reason for
this result is highly related to the specific sampling criteria, it reveals that model
correlation may not be the only important metric to characterize the relevance
of offline information. In fact, apparently the non-linear dependency of the high-
frequency component and the original function is helping our search procedure.

Table 4 shows the results from the second version of the algorithm, which cal-
culates the EI over the predicted offline model. Analyzing the results, it can be
observed that, while the algorithm still outperforms EGO when the offline model
is highly correlated with the true model, it fails when correlation is weak. While
optimizing according to solely the offline information can have advantages when
the offline model has optimization-amenable characteristics, relying too much on
offline data will slow down the search especially when the offline model and data
are “bad”, i.e., not informative of the real system. This importantly brings to light
the need to have good offline data.

Considering both Tables 3 and 4, we can see how, with “good” offline models,
the second version of the algorithm outperforms the first version, in that it requires
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a smaller number of online simulations on average. However, with less correlated
low-fidelity models, it is the first version of the algorithm that does a better job of
guiding the search towards optimal solution to the true model. This suggests that
a switching mechanism between the two criteria based on local correlation between
the models within the algorithm may be effective in more complex cases.

5. Conclusions and Future Research

We propose the GOLF framework to support real-time decision making for complex
systems in the presence of large data coming from both the sensing system as
well as from complex simulation models. GOLF separates the problem into an
offline phase where novel methods take the perspective of learning from past data
with the aid of simulation in the attempt to construct reliable models to explain
past observations. We first propose a novel complexity driven perspective to guide
sampling and model generation and preliminary results show the effectiveness of the
novel class of algorithms in identifying appropriate models “for the past” in non-
smooth high-dimensional set ups. The data and models become input information
to online GOLF, where a novel ordinal learning framework is proposed to leverage
on past offline generated data and quickly provide a scheme for additional sampling
that provides the solution for the scenario of interest.

The preliminary implementation of the several components of GOLF motivates
us to further explore GOLF. Specifically, several opportunities are currently being
investigated in applications such as smart manufacturing as well as Cyber Phys-
ical Systems at large (e.g., self-driven vehicles, water networks). The complexity
driven framework still relies on important assumptions on the type of models to
be included as well as on the way to assign complexity invariants. Both aspects
are under analysis and generalization is required to fully exploit GOLF. Concern-
ing the ordinal learning online GOLF phase, the ability to handle several scenarios
simultaneously as well as investigating innovative mapping techniques.
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